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Abstract

The relationship between low-level cloud optical depth and atmospheric and surface
air temperature is examined in the control climate of thirteen climate models to
determine if cloud optical depth-temperature relationships found in observations are
replicated in climate models, and if climate model behavior found in control climate
simulations provides information about the optical depth feedback in climate warming
simulations forced by increasing carbon dioxide. The regression of the natural
logarithm of cloud optical depth with cloud temperature is strongly positive for all
models for relatively cold clouds, while warmer clouds in the tropics and subtropics
exhibit a negative relationship. This relationship is qualitatively similar to that in an
earlier analysis of satellite observations, although models tend to have too positive a
relationship for colder clouds and the inter-model spread is large. In the models, the
cold cloud response comes from increases in cloud liquid and ice water content with

increasing temperature, while in the tropics decreasing physical thickness
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accompanies increasing cloud temperature. The intermodel and inter-regional spread
of low-cloud optical depth feedback in climate warming simulations is well predicted
by the corresponding spread in the relationships between optical depth and
temperature for the current climate, suggesting that this aspect of cloud feedback may
be constrained by present day observations. Because models have a positive bias
relative to observations in the relationship between low-cloud optical and
temperature, it is suggested that climate models simulate too great an increase in
cloud optical depth at high latitudes leading to unrealistically large negative

shortwave cloud feedbacks for climate changes.

1. Introduction

The accurate simulation of cloud properties is a longstanding problem that inhibits
confident projections of future climate. Previous research spanning several
generations of climate models has shown that the intermodel spread in climate
sensitivity is largely due to differences in cloud feedbacks (Cess et al., 1989, Soden
and Held, 2006, DuFresne and Bony, 2008, Andrews et al. 2012, Vial et al.,, 2013).
That small changes in clouds could alter climate sensitivity is suggested by the fact
in the current climate, clouds, relative to clear-sky, reflect approximately 50 W/m?
shortwave radiation and trap 30 W/m? more longwave radiation, globally averaged
(Harrison et al,, 1990), whereas the direct radiative impact of doubling carbon

dioxide (COz) is only 3.7 W/m? (Myhre et al., 1998).



46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

While cloud feedbacks can result from any change in cloud properties that
significantly impacts the radiation budget of the planet, conceptually cloud
feedbacks have been summarized as resulting from changes in three cloud
properties: cloud amount, cloud altitude, and cloud optical depth (Schneider and
Dickinson, 1974). In general, upon warming, climate models simulate decreases in
cloud amount, particularly for low-level clouds at low-latitudes, and increases in
cloud altitude, particularly for high clouds everywhere (Zelinka et al., 2012). Both
the decreased reflection of shortwave radiation from the cloud amount decreases
and the increased trapping of longwave radiation from the high cloud altitude
increases contribute to the generally positive global mean cloud feedbacks exhibited
by climate models. In contrast, climate models generally simulate increases in cloud
optical depth with warming that tend to cause negative cloud feedbacks because the
effects of increase cloud albedo on shortwave radiation overwhelm the impacts of
increased cloud emissivity on longwave radiation. In some climate models from the
5th Coupled Model Intercomparison Project (CMIP5), negative shortwave cloud
feedbacks from optical depth increases outweigh the positive shortwave cloud
feedbacks from decreased cloud amount and lead to overall negative shortwave
cloud feedbacks (Zelinka et al. 2013). This motivates research into the nature and

causes of the optical depth feedback.

An important aspect of the optical depth feedback simulated by climate models is
that it is non-uniform in space. Cold clouds, whether they are high-level clouds or

lower-level clouds at high-latitudes, tend to become optically thicker with warming
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of the planet. In contrast, warm clouds, primarily low-level clouds at temperatures
above about 0°C, tend to become optically thinner or exhibit little changes in optical
depth with warming. The increased optical depth of clouds at high-latitudes is the
main reason that nearly all climate models simulate negative shortwave cloud
feedbacks at middle and high-latitudes. The contribution of the optical depth
feedback to the latitudinal gradient in shortwave cloud feedbacks has caused
speculation that optical depth feedbacks many influence the degree of polar
amplification of the temperature warming exhibited in by climate models

(Tselioiudis et al. 1993).

An intriguing aspect to the response of cloud optical depth to climate warming is the
apparent similarity to the observed relationship between temperature and the
optical depth of low-level clouds arising from natural climate variability on seasonal
to interannual timescales. Specifically, both satellite (Tselioudis et al., 1992;
hereafter T92) and in situ observations (Somerville and Remer, 1984) have found
that the optical thickness of relatively cold low-level clouds increases with small
increases of temperature, whereas satellite observations suggest that an opposite
relationship exists for relatively warm low-level clouds (T92, Eitzen et al. 2011).
This qualitative similarity between low-level cloud optical depth-temperature
relationships in current climate observations and what climate models predict for
low-level clouds for warmer worlds raises a very important question: Is the
sensitivity of cloud optical depth to temperature on relatively short time scales

predictive of the optical depth feedbacks that may occur on longer timescales? If so,
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it would allow us to use observations of clouds within our current climate to reduce
inter-model spread in this feedback and potentially constrain the optical depth

feedback for future climate change.

In this article, we analyze the behavior of low-cloud optical depth (hereafter Tiow) in
an ensemble of climate models. We intend to (a) explore the degree of time-scale
invariance to the relationship between Tiow and temperature, (b) document the
ability of climate models to reproduce the observed relationships between Tiow and
temperature, and (c) determine the relative contributions within models of changes

in cloud physical properties to the relationship between Ti,w and temperature.

The plan of the article is as follows. After a presentation of Methods (Section 2), we
will examine the ability of models to replicate the observed relationships between
Tiow and cloud temperature (Section 3). We will then examine the relative
contribution of changes in water content and cloud physical thickness to the
simulated relationships between Tiow and cloud temperature (Section 4). Following
an examination of how Tiow relates to surface as opposed to cloud temperature in the
current climate (Section 5), we will present how Tiow changes in climate model
simulations of the climate change resulting from increases in CO; (Section 6). We
then examine the correspondence between the relationship between Tiowand
surface temperature in the current climate and that exhibited over climate changes

(Section 7) before presenting our conclusions (Section 8).
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2. Methods

We examine the climate models participating in the Cloud Feedback Model
Intercomparison Project Phases 1 & 2 (CFMIP1, McAvaney and LeTreut, 2003;
CFMIP2, Bony et al., 2011), projects aligned with phases 3 & 5 of CMIP, respectively.
Of these models, we only use the thirteen models that provide the International
Satellite Cloud Climatology Project (ISCCP, Rossow and Schiffer 1991, 1999)
simulator output and atmospheric temperature (Table 1) at daily resolution in a
control simulation (slabcntl in CFMIP1 and picontrol in CFMIP2) and a climate
change scenario (2xCO2 in CFMIP1 and abrupt4xCO2 in CFMIP2) of atmospheric
model coupled with a slab-ocean model for CFMIP1, and an interactive ocean for
CFMIPZ2. For all but two CFMIP1 models (miroc_hi and miroc_lo - 2 years), there
were five years of daily output for each of the two runs, while there were 20 years of
simulation available for the CFMIP2 models. For the latter set of models, only the
last 5 years of each model simulation were used to be consistent with the earlier
models. The ISCCP simulator (Klein and Jakob, 1999, Webb et al.,, 2001) provides
model cloud variables as if they were viewed by satellites used by ISCCP (Rossow
and Schiffer, 1991, 1999), accounting for issues of cloud overlap and the assignment
of cloud top pressure based upon an infrared brightness temperatures. This is an
important tool for our study, as it is the only source of T data in CFMIP and it allows
us to understand how the t behavior in climate models compare to that deduced
from the analysis of ISCCP observations (T92). It also allows us to predict the extent
to which cloud behavior that we can observe, via satellite platforms and within the

current climate, can be extrapolated to future climates.
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For each model, we take all time-space points with daily mean low-cloud (cloud-top
pressure > 680 hPa) fraction greater than 10%, and less than 5% cloud fraction in
all cloud layers above 680 hPa. The requirement for very small amounts of upper-
level clouds is to better focus on low-level cloud scenes, although the results are
similar if this restriction is eliminated (not shown). To determine a single value of
cloud-top temperature for each point with low-level clouds, we calculate a cloud
fraction weighted temperature using the model-predicted cloud fraction (i.e., not the
ISCCP simulator determined cloud fractions) and temperature at each model layer
below 680 hPa, assuming maximum cloud overlap for cloudy layers to determine
the portion of clouds in each layer that are exposed to space. This allows us to
simulate a cloud-top temperature of the low cloud as seen from a satellite, with
perhaps a slight warm bias to the calculated temperature because the model
temperature represent the mean of a layer, rather than the value at the top of a
model level. Using the ISCCP simulator output, we derive a single value of Tiow for
each grid-box with low-level clouds below 680 hPa by the amount of cloud present
in the bin. We convert the mid-point of T of each ISCCP simulator bin to reflectivity
using an ISCCP look-up table, then calculate an average cloud reflectivity by
weighting the reflectivity of each ISCCP histogram bin by the cloud fraction. The
mean reflectivity is then converted to a mean Tiow using the same look-up table. This
averaging technique ensures proper weighting based on amount of attenuated

radiation.
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Thus, for each valid observation as described above, we have a model-simulated
cloud-top temperature and Tiow, and we will use an analysis technique similar to T92
to compute the relationship between these two variables. In this procedure, for each
model, all observations are grouped by region based on latitude bands, and then are
binned based on cloud temperature. From all data points falling within a given 15K
wide bin of cloud temperature, a linear regression coefficient between the natural
logarithm of Tiow and cloud-top temperature is calculated. The slope of this
regression gives us the sensitivity of Tiow to temperature derived from variability at
all time scales from daily through seasonal to interannual. Overlapping bins of
cloud-top temperature are used to determine how the sensitivity of Tiow to
temperature varies with the mean cloud temperature. Regressions slopes are not
reported unless at least 50 grid-boxes are available with data and for which no
fewer than 1/3 of the data points occur with temperatures on either side of the

midpoint temperature for the bin.

It is also important to understand the source of changes in optical depth. In order to

do so, it is helpful to recall the empirical relationship for liquid T (Stephens 1978):

ql5Z

T =

[1]

N W

re

where g is the average in-cloud liquid water content, assumed to be constant
through the cloudy layers, 6z is the cloud physical thickness in the vertical
dimension, and r, is the effective radius of cloud particles. While [1] does not apply

directly for ice clouds, [1] remind us of the relevant variables we should attempt to
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examine. For the water content, we analyze the sum of in-cloud liquid and ice water
contents and its relationship with temperature. All but three CFMIP1 models
(hadgsm, hadsm3, and hadsm4) provide the grid-box mean cloud liquid and ice
specific humidities on model layers (clw and cli, respectively). Volume-averaged in-
cloud liquid plus ice water content is calculated using an estimate of cloud volume
derived from the model-layer cloud fractions. Consistent with this, 6z is calculated
from the same vertical profile of cloud fraction assuming maximum overlap. Cloud
particle size output is unavailable in the CFMIP archive. Attempts to infer its
temperature derivative as a residual using [1] (not shown) suggest a small role for

particle size variations consistent with scaling estimates provided in T92.

3. The relationship between low-cloud optical depth and cloud-top
temperature in the current climate

Figure 1 shows the value of the linear regression coefficient of the natural logarithm
of Tiow with cloud-top temperature (as described above) for clouds below 680 hPa.
Figure 1a shows the results for land points, while Figure 1b shows the results for
ocean points. Regression slopes are calculated separately for each of five regions,
tropics (red - 0-15° latitude), subtropics (blue - 15-35°), midlatitudes (black - 35-
55°), subpolar (green - 55-70°), and polar (magenta - 70-90°), using data from both
the Northern and Southern Hemisphere. The value for each model is represented by
a single symbol, while the solid line represents the multi-model median. The dashed

lines in both figures reproduce the values derived from the ISCCP satellite
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observations by T92 which were calculated only for the tropical, subtropical and

middle latitude regions over land and ocean separately.

We see some similarities and differences between the values calculated from
observations and those calculated from the climate models. For the majority of
models and regions, there is a common response of clouds colder than about 5°C,
namely Tiow increases with increases in cloud-top temperature. But, for clouds
warmer than 5°C, we see the opposite relationship, where Ti,w decreases with
increasing cloud-top temperature in the majority of models and regions. Some
oceanic Tiow decreases with increases in cloud-top temperature are also present for
temperatures colder than -25°C. Despite the similar shape and magnitude between
the median of model results and those of T92, the multi-model median curves do not
lie on top of those of T92, with the models tending to have a more positive value of
the relationship between Tiow and cloud-top temperature than observed particularly
for temperatures less than 5°C. Although the significance of which we are not sure,
we note that in the medians, climate models reproduce the fact that the temperature
derivative of Tiow is greater over land than ocean in the middle latitude regions with
temperatures less than -10°C and subtropical regions with temperatures less than
0°C. The climate models we analyze here appear to be agree better with the
observations in comparison to the GISS climate model analyzed in Tselioudis et al.
(1993), which had comparable positive warm cloud feedbacks, but did not

reproduce the robust cloud optical depth increases at cold temperatures.
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We note that there is a wide diversity in cloud responses across the models. This is
evident in range of feedback factor values that models display, even when the multi-
model median is close to observations. For example, for midlatitude clouds over
land (Fig. 1a) at -20°C, the multi-model median value temperature derivative of the
logarithm of Tiow is 0.06 and the value derived from ISCCP observations by T92 is
0.05. But model values range from 0.02 to 0.21, spanning an order of magnitude.
These intermodel differences are larger than the statistical uncertainties in the

regression slope suggesting that real and significant inter-model differences exist.

While the uncertainty in the values of this parameter derived from the ISCCP
observations are unclear, we have some evidence that inferences on model ability to
simulate this parameter are robust to the choice of observational dataset. Using Tiow
retrievals from the MODerate Resolution Imaging Spectrometer aboard the Aqua
and Terra satellites, Eitzen et al. (2011) calculated the derivative between the
logarithm of Tiow and sea surface temperature over subtropical regions known to
have a large amount of stratocumulus, and found a value between -0.1 and -0.085,
depending on the satellite platforms used. Using the same regions and comparing
the model Tiow to surface air temperature instead of cloud-top temperature, we find
a multi-model median value over all subtropical regions of 0.015, which is

significantly more positive than the satellite results.

To test the robustness of the results to the methodology used for analysis, we also

computed the relationship between the logarithm of ti,w and cloud-top temperature
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separately for each latitude and month of the simulations using all of the data from
low-level cloud scenes at any longitude within a given month and latitude. For each
month, the multi-model mean results demonstrate positive values at high-latitudes
of each hemisphere and negative values at low-latitudes (not shown). This suggests
that the simulated relationship between Tiow and cloud-top temperature shown does
not depend on the inclusion of seasonal and interannual variability (which is
included in the regression included in Figure 1). Furthermore, the latitude at which
derivative transitions from negative to positive values moves poleward in the
summer season of a given hemisphere roughly in-line with the movement of the 0°C
isotherm of cloud-top temperature. This again suggests that the simulated
relationship between Tiow and cloud-top temperature depends fundamentally on
temperature and is not a function of the space or time-scale of the variability

analyzed.

4. The role of cloud properties in low-cloud optical depth - temperature
relationships in the current climate

In order to determine the relative importance of different cloud properties in
contributing to the relationship between Tiow and cloud-top temperature, Figure 2
shows the regression slopes of all observations of the natural logarithms of (a) Tiow,
(b) liquid plus ice water content, and (c) cloud physical thickness, all with respect to
cloud-top temperature. Rather than display results for each latitude region and land
and ocean separately as in Figure 1, we use a series of box and whisker plots for

each cloud-top temperature of the regression slopes from all contributing regions
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regardless of whether the data was from land and ocean regions. The box and
whisker plots show the minimum, 25t percentile, median, 75t percentile, and

maximum regression slopes of each temperature bin.

Figure 2 suggests that the majority of the positive relationship between Tiow and
cloud-top temperature at cold temperatures comes from an increase in cloud water
content with temperature, while the negative relationship at warmer temperatures
results from decreases in cloud physical thickness. While inter-model spread can be
significant, these general characteristics are present in the majority of models

individually.

With regard to cloud water content (Figure 2b), the temperature derivative of the
logarithm of cloud water content is in magnitude similar to that reported by
Somerville and Remer (1984) for liquid water content observed from in situ aircraft
observations. Specifically, they reported a value of feedback factor of 0.04-0.05
across a temperature range between -25°C and +5°C. Over a similar range of
temperature, the median model result is slightly larger, near 0.06 - 0.08. This may
explain the propensity for models’ to overestimate the relationship between Tiow and
temperature at cold temperatures as compared to satellite observations (Figs. 1a

and 1b).

As a physical explanation for this positive relationship between water content and

temperature, it is tempting to invoke the temperature derivative to the adiabatic



295  water content of clouds (Betts and Harshvardhan 1987). According to moist

296  adiabatic theory, the adiabatic water content depends on the slope of the moist
297  adiabat with respect to pressure. If the water content of clouds were a fixed fraction
298  of the adiabatic water content, we would expect that the temperature derivative of
299  logarithm of water content to be equal to the temperature derivative of the

300 logarithm of the moist adiabat. The dashed line on Figure 2b shows the values of
301 this derivative we calculate as a function of cloud-top temperature assuming a
302  cloud-top pressure of 900 hPa. As shown by Betts and Harshvardhan (1987), this
303  derivative is a strongly decreasing function of temperature with values near 0.07
304 per Kelvin at -25°C to values lower than 0.02 per Kelvin at temperatures above
305 +10°C. The median model results also exhibit decreasing derivatives as the

306 temperature rises but with larger values for temperatures in the range of -20°C to
307  0°C. Note that because the water content of clouds is a model-predicted variable
308 subject to the influence of non-adiabatic processes such as mixing with the

309 environment and precipitation, there is no guarantee that the water content of
310 clouds would match that predicted solely from consideration of condensation
311 processes along a moist adiabat.

312

313 Indeed, for temperatures beneath freezing it is possible that phase changes

314 contribute to the positive derivatives of water content with temperature.

315  Specifically, because of their characteristic sizes being larger leading to larger
316  settling velocities, low-level stratiform clouds with ice-only tend to have a much

317 lower water content than clouds that contain super-cooled water (Shupe et al.
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2008). To the extent that temperature increases on average promote a reduction of
the influences of ice, this phase transition would promote an increase of water
content with temperature (Tsushima et al. 2006). The fact that particle sizes of ice
tend to be larger than that of liquid also would contribute to an increase of Tiow with

temperature.

With respect to cloud physical thickness, they tend to decrease with increases in
cloud-top temperatures for warm clouds with little relationship or slight thickness
increases for the coldest clouds (Figure 2c). Relative to water content, there is less
inter-model spread that is difficult to explain although it may reflect that with poor
vertical resolution there is little room of physical cloud thickness to vary
systematically. The model result for the coldest clouds may be consistent with Lin et
al. (2003) who found that in observations of Arctic low-clouds, cloud physical
thickness tended to increase with warming by a lowering of cloud base and was the

primary reason why liquid water paths increased at a rate of 0.03 K-1.

Why models exhibit a negative relationship exists between cloud physical thickness
and cloud-top temperature for warm temperatures is less well understood, although
there are possible explanations from process-studies of subtropical marine
boundary layer cloud. Bretherton and Wyant (1997) used a mixed-layer model of
the stratocumulus-topped boundary layer to show that as boundary layer clouds
were advected over warmer water, they tended to become more decoupled from the

surface and the boundary layer deepened. This decoupling of the cloud layer from
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the surface reduced the moisture flux into the cloud, leading to a physically and
optically thinner cloud. More recently, Large-Eddy Simulations of marine
stratocumulus suggest physically thinner stratocumulus clouds would result with
climate warming (under conditions of fixed-subsidence) (Blossey et al. 2013).
Bretherton et al. (2013) interpret the LES cloud thinning with warming to result
from the fact that a thinner cloud can sustain the same level of entrainment in the
presence of a larger drop of absolute humidity between the surface and the free
troposphere. However, it is unclear whether the climate models analyzed here have

the physics necessary to simulate these mechanisms.

5. The relationship of low-cloud optical depth and properties to surface
temperature in the current climate

We have related variations in Tiow and low-cloud properties to the cloud-top
temperature in order to compare with the analysis based upon satellite
observations which use cloud-top temperature (T92) as well as to document the
relationship between low-level clouds and their actual temperatures. But, in order
to relate current climate variability in low-level clouds to climate-change feedbacks,
we need to document how low-cloud properties relate to variability in surface air
temperature, the fundamental variable for climate feedback analysis. In Figure 3, we
display the results of the analogous calculations to those in Figure 2 but using
surface air temperature as the variable to which low-cloud properties have been

regressed.
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Apart from the expected shift in temperature resulting from the fact that
temperatures at the surface are warmer than those in the cloud, the main features of
the regression slopes remain largely the same. Specifically, we still see a positive
relationship, between Tiow and the in-cloud values of water content and temperature
for cold clouds, with values closer to zero at warm temperatures. An exception is
that at warm temperatures, Tiow does not depend upon surface air temperature
whereas a weak negative relationship was present in the relationship of Tiow to
cloud-top temperature. This appears to result from the fact at these warm
temperatures that the cloud physical thickness has a weak positive instead of
negative relationship with temperature (Figure 3c). A positive relationship of cloud
physical thickness with temperature would match the expectation that marine
shallow convective clouds are taller with warmer surface air temperatures as shown
by Large-Eddy Simulations (Rieck et al. 2012, Blosey et al. 2013), although it is

unclear if this is the explanation for the model behavior.

6. The climate change response of low-cloud optical depth

We aim to examine the association of relationships between low-cloud properties
and temperature arising from variability in the current climate with the response of
low-clouds to carbon-dioxide induced warming. The simplest measure of the

strength of the Ti,w feedback in the climate change simulations is:

Aln (Tlow) _ ln(Tlow,TCOZ) —In (Tlow,cntl)

ATS,G TS,G,TCOZ - TS,G,Cntl

factual = l [2]
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Calculated individually for each gridbox and model, this parameter is the difference
in the mean Tiow between simulations with a climate change (2xCO2 or 4xC0Oz) and
the control integrations, divided by the change in global mean surface air
temperature Tsc. The overbar represents the time-mean average for a given
gridbox, which for the CFMIP1 models is calculated as the means over the last 5
years of the 2 X COz and control simulations - 30 years after the doubling of CO; was
imposed. For CFMIP2 models, the means are calculated over the years 135-140 after
CO2 quadrupling and the corresponding years from the control simulation. Figure 4a
shows the multi-model mean of this parameter which exhibits positive values near
around +0.16 K1 at high latitudes and near-zero values in the tropics or slightly
negative values around -0.04 K1 in subsidence regions over the low latitude oceans.
Exceptions to this general behavior are found over Siberia and the Canadian Arctic.
This pattern is generally similar to Figure 1 of Zelinka et al. (2012a), although it
should be borne in mind that they show the T change of all clouds, not just low

clouds.

There is some intermodel spread to this pattern, particularly in the tropics which
has fewer data points entering the calculation because our required conditions of a
sufficient amount of low clouds without upper-level clouds present rarely occur.
Although we require 5 observations per gridbox, in both the control climate and
climate change simulations, in order to calculate this parameter, the paucity of
observations and the fact that not every model may have enough observations to

calculate a feedback parameter leads to spatial noise in the figure.
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The changes in Tiow computed in this way may arise from changes in variety of
factors such as thermodynamic environment of the clouds as well as changes in
circulation. For a single model, we investigated the relative of these factors by
computing changes in Tiow separately for different dynamical conditions.
Specifically, for each grid box, we partitioned the daily-mean model output into
quintiles based on both 500-mb vertical velocity and surface pressure. Both of these
variables have been used for dynamical compositing of synoptic regimes (Norris
and Weaver, 2000; Tselioudis et al., 2000). However, we found no difference in the
calculation of tiow feedback when compositing for dynamics using vertical motion
and surface pressure as compared to the simple difference of grid box mean values
between the 2xC0O2 and control climate integrations. This suggests a dominant role

for thermodynamic conditions in explaining the climate changes in Tiow.

As noted in the introduction, an intriguing aspect of Figure 4a is the similarity of the
climate change response to warming of Tiow with how Tiow varies with temperature
in variability within the current climate. Specifically, positives values at high
latitudes where the low-level clouds are cold and near zero or negative values at
low-latitudes where low-level clouds are warm are at least superficially similar to
the results in Figures 2a and 3a. Additionally, quantitatively the values shown in
Figure 4a are similar in magnitude; this will be further tested in the next section. To
display the similarity as a function of latitude and longitude, we have computed the

regression of Tiow on local surface air temperature in each grid box and model from
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natural variability within the current climate. The multi-model mean of the local
derivative of Tiow on local surface air temperature, shown in Figure 4b, again
illustrates a great degree of similarity to the climate change response of Tiow in
Figure 4a, with two noticeable differences. First, quantitatively the response in high-
latitudes in Figure 4b is smaller than that in Figure 4a. We believe this results from
the simple fact that in Figure 4a, we have normalized by the change in global mean
surface air temperature. If we normalize by the local change in surface air
temperature, which are larger than the global mean due to polar amplification of the
warming (not shown), the values at high latitudes in Figure 4a would be smaller and
in better agreement with those in Figure 4b. (This will quantitatively be tested in the
next section). Second, in the deep tropics, there are some regions with positive
regressions between Tiow and local surface air temperature. This appears to be
significant even though the spatial noise is large due to the relative infrequency of
low-level clouds. This may reflect the tendency of shallow convective clouds to grow

in depth somewhat at the warmest temperatures (Figure 3c).

7. Timescale invariance of the relationship between low-cloud optical depth
and surface temperature

Just as Hall and Qu (2006) demonstrated that the seasonal magnitude of the
relationship between surface albedo and temperature is a good predictor of the
snow-albedo feedback value for climate changes in climate models, we attempt to
demonstrate whether such a relationship holds for the optical depth feedback of

low-level clouds. We designed the following test which examines whether variations
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across model and latitudes in the relationship between Tiow and temperature are

correlated across time-scale.

For each model and the 5 regions from the tropics to the poles, we calculate a mean
value of the logarithmic derivative of Tiow on surface air temperature arising from
variability within the current climate. This mean is calculated as a weighted average
of the regression values that make up the curve in Figure 3a, where the weights are
the number of low-level cloud instances used to calculated a regression at a given
mean surface-air temperature in a given region and model. Using this average to
represent the characteristic value for the region and model of the way that Tiow
varies with surface air temperature, we then make a prediction of the climate
change Ttiow feedback by multiplying by the ratio of the change in surface air
temperature averaged over the region to the change in global mean surface air
temperature. This yields a predictive Tiow feedback factor fcny, based upon the
relationship between Tiow and surface air temperature from the current climate:

An (Tiow) :
Zi < o’{TS,L i * ﬁ) (ATS,R> [3]
*
Xif Mg €O, 1—cntl

fcntl =

cntl

In Equation 3, the first term is the weighted product of the feedback factor

(8In(t)/6TsL) with respect to the local surface air temperature Ts;, with the relative
frequency of occurrence (f) of each surface air temperature bin, and the summation
occurs over each of the 15K wide surface air temperature bins (i) for which Tiow was

regressed on surface air temperature. The second term in Equation 3 is the average
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change in surface air temperature for a specific region (ATsRr) relative to the global-
mean change in surface air temperature (ATsg), both computed as a difference
between the simulations with increased CO2 and of the control climate. To obtain
the analogous value for the actual Tiow feedback simulated by the model under
climate change, we take the spatial average of the Tiow feedback from Eq. (2) over

each region for each model that makes up the multi-model average plot of Figure 4a.

In Figure 5a, we display a scatterplot of the actual Tiow feedback from the climate
change simulation on the y-axis and that predicted from the current climate on the
x-axis for each of the 13 models and for each of the five regions. Each marker
represents the average value for that model and a given region, and the colored line
represents a least squares regression of the points which is performed separately
for each of the 5 regions and then once again by combining the data from all of the
regions (shown with a thick orange line). We have used the same colors and
symbols as in Figure 1. The thin dashed line is a one-to-one line for reference, and
would represent pure time scale invariance for the relationship of Tiow to
temperature. For each region, there are positive relationships between the optical
depth feedback predicted by a model’s relationship between Tiow and temperature in
the current climate, suitably scaled by the local to global temperature change after
increased COz, to the climate change Tiow feedback actually simulated by the model.
The value of r? for the regression that uses data from all regions is 0.61, and the
midlatitude region having the most variance explained across models (0.72). From

this evidence, we suggest that the relationship between Ti,w and temperature does
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exhibit some degree of time-scale invariance but with two caveats. First, in a
number or regions the regression slopes are biased such that the relationship
between Tiow and temperature in the current climate over-predicts the magnitude of
the Tiow feedback to climate change. Secondly, the lack of perfect correlation suggests
that other factors besides thermodynamics influence the tiow feedback, although the
lack of perfect correlation could also result from errors in our methods used to
measure and predict the Tiow feedback from the relationship between Tiow and

temperature in the current climate.

Since much of the relationship between Ti,w and temperature in current-climate
variability arises from how the in-cloud water plus ice water content relates to
temperature, we have also tested the time-scale invariance of water content in the
exactly analogous way to that of Tiow. The result shown in Figure 5b shows very
similar results to that of Tiow, suggesting that the way that the in-cloud water content
of low-level clouds varies with temperature is the source of the time-scale

invariance in Tiow.

8. Conclusions
We present our conclusions according to the 3 primary questions we seek to

answer:

1) How well do climate models reproduce the observed relationships between Tiow

and temperature?
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In the ensemble mean, climate models appear to reproduce the observed
characteristic that Tiow increases with temperature for cold low-level clouds, but
decreases with temperature for warm low-level clouds. However, inter-model
scatter is large and most models have a positive bias in the relationship of Tiow with

temperature.

2) To what degree are the relationships between Tiow and temperature arising from
natural variability within the current climate predictive of the response on longer-

time scales of Tiow to warming induced by increases in CO2?

Our tests indicate that inter-model and inter-region variability in the relationship
between Tiow and temperature is to a large, but not complete, degree correlated
across time-scale. This suggests that inter-model spread in the component of
climate-change cloud feedbacks due to changes in Tiow can be reduced by improving
the agreement between climate models and observations of the relationship
between Tiow and temperature arising from natural variability from within the
current climate. Furthermore, because models on average have a positive bias
relative to the T92 observations in the relationship between Tiow and temperature,
we suggest that the portion of high-latitude negative shortwave cloud feedbacks due

to increases in Tiow may be too strong in models.
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3) What are the relative contributions within models of changes in cloud physical

properties to the relationship between Ti,wand temperature?

Broadly speaking, the relationship of condensed water content inside the clouds to
temperature are very similar to that of Tiow with temperature. Decreased physical
cloud thickness with increases in temperature appear to partially contribute to the

negative relationship between Tiow and temperature for warm low-level clouds.

Our work raises a number of important questions worthy of further study including:

1. What is the relative role of rapid adjustments (Gregory and Webb, 2008) to
increases in CO; relative to temperature-mediated responses in explaining climate
changes in Tiow? Zelinka et al. (2013) show that the t feedback is actually stronger
than previously thought once one removes the rapid reductions in T that occur in
response to increases in COz but before warming occurs. Factoring in the rapid
adjustments may partially explain why the tiow feedback predicted from current
climate variability overestimates the actual feedback simulated by the models
(Figure 5). Unfortunately identical daily model output to that used in this study was

not available to examine this question.

2. What are the physical processes that give rise to the model-simulated
relationships with temperature of Tiowor water content? For cold clouds, is adiabatic

theory really the reason that models on average simulate a rate of increase in water
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content with temperature identical to that of the adiabatic water content? To what
extent do phase changes contribute? For warm low-level clouds, what physical
reasons explain why climate models on average simulate decreases in Tiow with

temperature increases and why is the adiabatic lapse rate not a dominant factor?

3. Finally, what do newer and more complete observations inform us about the
physical mechanisms that explain the relationship between temperature and Tiow Or
cloud properties? Many newer and more detailed satellite observations have been
made available since the observational work of T92, and the active satellite sensors
of CLOUDSAT (Stephens et al., 2002) and CALIPSO (Winker et al., 2009) would allow
us explore the high latitude relationships that were not explored in T92 due to
concerns of errors in retrievals over snow and ice. There is also the vast store of
ground-based observations provided from sites maintained by the Atmospheric
Research Measurement program (Ackerman and Stokes, 2004), which would allow
for detailed in situ retrievals of cloud properties (such as cloud water content and
physical thickness) at high time resolution. A study analyzing this ground-based
data for the relationships of temperature with Ti,w and low-level cloud properties is

in preparation (Zhang et al. 2013).
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Table 1 - List of models used in this study, their corresponding acronyms and

citations.
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Figure 1 - Regression of the natural logarithm of cloud optical thickness with cloud-
top temperature for all observations grouped in 15°C-wide bins of cloud-top
temperature, separately for each of five regions, tropics (red - 0-15°), subtropics
(blue - 15-35°), midlatitudes (black - 35-55°), subpolar (green - 55-70°), and polar
(magenta - 70-90°). Each model is represent by an individual dot, while the solid
line represents the multi-model median value. The results of T92 are shown in black
dashed lines. The analysis is done separately for (a) land points and (b) ocean
points.

Figure 2 - Multi-model box and whisker plot of regression value with cloud top-top
temperature for each model grid-box of the natural logarithm of (a) cloud optical
depth, (b) cloud liquid water content, and (c) cloud physical thickness. The red line
represents the median value, the interquartile range is spanned by the blue box, and
the dashed lines extend to the minimum and maximum value for each temperature
bin.

Figure 3 - Similar to Figure 2, but for regressions are calculated with respect to
surface air temperature (TAS) for all regions together. The box and whiskers
represent the minimum, 25t percentile, median, 50t percentile, and maximum of
the feedback value among the 13 models at each temperature bin.

Figure 4 - (a) Multi-model mean climate change optical depth feedback parameter,
calculated as the difference in natural logarithm of low cloud optical depth, divided
by the difference in global mean surface temperature, both between the control and
climate change integrations of all 13 CFMIP models. (b) Multi-model mean control
climate regression value of the natural logarithm of optical depth and surface air
temperature.

Figure 5 - Relationship between the optical depth feedback derived from the
current climate (from Equation 3 - abscissa) and that for the climate change
response (from Equation 2 - ordinate) for the tropics (red: 0-15°), subtropics (blue:
15-35°), midlatitudes (black: 35-55°), subpolar (green: 55-70°), and polar (magenta:
70-90°) regions. The colored lines represent a least-squares regression for each
region, the orange dashed line is the least-squares regression for all regions
together, and the thin dashed line is a one-to-one line for reference.
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Table 1

Model ID

Modeling Center

Reference

CCCMA

Canadian Centre for
Climate Modelling &
Analysis

McFarlane et al. (2005)

GFDL

US Dept. of Commerce /
NOAA / Geophysical Fluid
Dynamics Laboratory

Geophysical Fluid
Dynamics Laboratory
Global Atmosphere Model
Development Team (2004)

MIROC Hi

CMIP3/CFMIP1

MIROC Lo

Center for Climate System
Research (The University of
Tokyo), National Institute
for Environmental Studies,
and Frontier Research
Center for Global Change
(JAMSTEC)

K-1 Model Developers
(2004)

HadGSM1

HadSM3

HadSM4

Hadley Centre for Climate
Prediction and Research /
Met Office

Johns et al. (2006)

Pope et al. (2000)

CanESM?2

Canadian Centre for
Climate Modelling &
Analysis

McFarlane et al. (2005)

HdGEM2-ES

Hadley Centre for Climate
Prediction and Research /
Met Office

Martin et al. (2011)

MPI-ESM-LR

Max-Planck-Institut fiir
Meteorologie (Max Planck
Institute for Meteorology)

Stevens et al. (2012)

MIROC-ESM

Japan Agency for Marine-
Earth Science and
Technology, Atmosphere
and Ocean Research
Institute (The University of
Tokyo), and National
Institute for Environmental
Studies

Watanabe et al. (2010)

CMIP5/CFMIP2

MIROC5

Atmosphere and Ocean
Research Institute (The
University of Tokyo),
National Institute for
Environmental Studies, and
Japan Agency for Marine-
Earth Science and
Technology

Watanabe et al. (2011)

MRI-CGCM3

Meteorological Research
Institute

Yukimoto et al. (2012)
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Figure 1
Regression of In(t) and CTT for CMIP3/5
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Regression with CTT for CMIP3/5
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Figure 3
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Regression with TAS for CMIP3/5
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(a) Multi-model Climate Change A(Int)/AT_(global) for CMIP3/5
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Figure 5

Actual Climate Change Feedback
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